Ptolemy Harmonics 3.2

Μέθοδοι πρὸς τὴν διὰ μέσων τῶν ὀκτὼ φθόγγων μέχρι τοῦ δὶς διὰ πασῶν κατατομήν.

Μεθοδεύοιτο δ’ ἂν ἡ τοῦ δὶς διὰ πασῶν κατατομὴ καὶ μόνων τῶν ἐξαρχῆς ὀκτὼ φθόγγων ὑποκειμένων τὸν τρόπον τοῦτον. νοείσθω τὸ ἐφαρμόζον ὅλῳ τῶ μήκει κανόνιον τὸ ΑΒ καὶ τετμήσθω κατὰ τὸ Γ σημεῖον, ὥστε διπλάσιον ποιεῖν τὸ ΑΓ τμῆμα τοῦ ΓΒ, καὶ ἀπειλήφθω ἐφ’ ἑκάτερα τοῦ Γ πρὸς μὲν τῷ Β τὸ ΓΔ, πρὸς δὲ τῷ Α τὸ ΓΕ, ὥστε τὸ μὲν ΔΕ ὅλον ἑνὸς μαγαδίου τῶν κινουμένων ἢ μικρῷ μεῖζον πλάτος ἀπολαμβάνειν, τὸ δὲ ΕΓ τοῦ ΓΔ εἶναι διπλάσιον, ἵνα καὶ λοιπὸν τὸ ΑΕ λοιποῦ τοῦ ΔΒ μένῃ διπλάσιον. ἐὰν δὴ ἑκάτερον τῶν ΒΔ καὶ ΑΕ τμημάτων διέλωμεν εἰς τὰς μέχρι τοῦ βαρυτάτου φθόγγου φθανούσας μοίρας, ἀπὸ τῶν Α καὶ Β λαμβάνοντες τὰς τῶν ἀριθμῶν ἀρχάς, ἔπειτα διπλῆν ποιώμεθα τὴν τῶν μαγαδίων ὑπαγωγὴν ἐν τῇ πρὸς ἑκάτερα τὰ πέρατα τοῦ διὰ πασῶν παραβολῇ, αἱ τοῖς αὐτοῖς ἀριθμοῖς ἡνωμέναι παραθέσεις ἐφ’ ἑκάστου φθόγγου τὸ πρὸς τῷ Α τμῆμα τοῦ πρὸς τῷ Β τηρήσουσι πάλιν διπλάσιον, ὥστε καὶ ὅλον τὸ πρὸς τῷ Β διὰ πασῶν ὀξύτερον συνίστασθαι τοῦ πρὸς τῷ Α τῷ διὰ πασῶν. Τὸ μὲν οὖν κανόνιον οὕτως ἔστω διῃρημένον. ἐπεὶ δὲ τῶν ὀκτὼ φθόγγων ἰσοτόνων ὑποτιθεμένων ἀνάγκη τοὺς ὀξυτάτους τῶν δύο διὰ πασῶν κατὰ τὰς ἡμισείας τῶν ΑΕ καὶ ΔΒ λαμβανομένους δυσήχους καθίστασθαι καὶ μάλιστα τὸν πρὸς τῷ Β μετὰ τῶν ἐχομένων διὰ τὴν βραχύτητα τῶν ποιούντων αὐτοὺς τμημάτων, παραφυλάξομεν πάλιν, ὥστε τοὺς ἐπάνω τέσσαρας φθόγγους ἰσχνοτέρους εἶναι καὶ ἀλλήλοις μὲν ἰσοτόνους, ὀξυτέρους δὲ τῶν ὑποκάτω τεσσάρων τῷ διὰ πέντε καὶ τούτων ἰσοτόνων ἀλλήλοις τηρουμένων. οὕτω γὰρ ἡ μέχρι μόνου τοῦ διὰ τεσσάρων ἐν ἀμφοτέροις τοῖς τετραχόρδοις ἀπὸ τῶν βαρυτάτων ἐπὶ τὸ ὀξὺ κατατομὴ ποιήσει τὸ διὰ πασῶν, συντιθέμενον ἔκ τε τῆς παρὰ τὸ μῆκος ἐπὶ τὸ διὰ τεσσάρων καὶ ἐκ τῆς παρὰ τὴν τάσιν ἐπὶ τὸ διὰ πέντε παραυξήσεως. Νοείσθω γὰρ ἐπὶ τοῦ ἑτέρου τῶν τετραχόρδων τμημάτων τὰ μὲν κοινὰ πέρατα κατὰ τῶν ΑΒΓΔ, τῶν δὲ ἐν ἴσοις μήκεσι φθόγγων ὁ μὲν ὀξύτατος ὁ ΑΕ, ὁ δὲ τέταρτος ἀπ’ αὐτοῦ ὁ ΒΖ, καὶ πέμπτος μὲν ὁ ΓΗ, ὄγδοος δὲ ὁ ΔΘ, ὀξύτεροι δὲ κατὰ τὴν τάσιν οἱ ΑΕ καὶ ΒΖ τῶν ΓΗ καὶ ΔΘ τῷ διὰ πέντε. καὶ ἀπειλήφθω ἴσα τμήματα τὰ ΑΚ καὶ ΓΛ, ὥστε ἐπίτριτα εἶναι αὐτῶν τὰ ΒΖ καὶ τὰ ΔΘ, ὑπαχθέντων δὲ τῶν ἐν τοῖς μαγαδίοις ἀποψαλμάτων ὑπὸ τὰ ΘΛΖΚ σημεῖα, τῷ μὲν διὰ τεσσάρων ὀξύτερα δηλονότι ἔσται τό τε ΑΚ τοῦ ΒΖ καὶ τὸ ΓΛ τοῦ ΔΘ. ἐπεὶ δὲ καὶ τό τε ΒΖ τοῦ ΔΘ ὑπόκειται τῷ διὰ πέντε ὀξύτερον καὶ τὸ ΑΚ τοῦ ΓΛ, ὅτι καὶ ὅλον τὸ ΑΕ τοῦ ΓΗ καὶ τὸ ΒΖ τοῦ ΔΘ, φανερόν, ὅτι καὶ τὸ μὲν ΒΖ τοῦ ΓΛ τόνῳ ἔσται ὀξύτερον, τὸ δὲ ΑΚ τοῦ ΔΘ τῷ διὰ πασῶν, τοῦ παραπλησίου κἀπὶ τῶν μεταξὺ πιπτόντων τμημάτων συμβαίνοντος, ἅτε καθόλου τῆς τῶν ὀξυτέρων τεσσάρων φθόγγων κατατομῆς ὑποβιβαζομένης τοῖς τοῦ διὰ πέντε λόγοις ἡμιολίοις παρὰ τὴν γενομένην, ἀνισοτόνων πάντων καθισταμένων, ἵνα ἐφ’ ὅσον ἐκ τῆς τάσεως ἐπὶ τὸ ὀξὺ παρηυξήθησαν, ἐπὶ τοσοῦτον ἐκ τῆς τοῦ μήκους μειώσεως ἐπὶ τὸ βαρὺ καθαιρεθέντες εἰς τὰς τῶν ἐξαρχῆς λόγων ἀποκαταστῶσι πηλικότητας. Διὸ προσεκτέον ὅπως, ἐπειδὰν τοὺς τῶν ὀξυτέρων τετραχόρδων τόπους ἐκλαμβάνωμεν τοὺς ἡμιολίους τῶν διασημαινομένων ἀπὸ τῆς ἐκθέσεως ἀριθμῶν, εἰσφέρωμεν εἰς τὰς εἰλημμένας ἐφ’ ἑκάτερα τοῦ κανονίου κατατομάς, ἃς καὶ προσεκβαλοῦμεν ἐνταῦθα μέχρι μοιρῶν ρλʹ ιαʹ, ἵν’ ἔχωμεν τοῦ κατὰ τὸν βαρύτατον τῶν τεσσάρων ἀπὸ τοῦ ὀξυτάτου φθόγγων ἀριθμοῦ περιέχοντας μοίρας πϚʹ μζʹ τὸν ἡμιόλιον ἐκλαμβάνειν. παραυξηθήσεται δ’ ἔτι μᾶλλον τὰ μήκη τῶν ὀξυτέρων φθόγγων, ἐὰν ὅλῳ τῷ διὰ πασῶν ὀξυτέρους ποιῶμεν τοὺς εἰρημένους τέσσαρας φθόγγους τῶν ὑπ’ αὐτούς, ἵνα συμβαίνῃ μηκέτι καθάπερ πρότερον ὑπ’ ἀμφοτέρων τῶν τετραχόρδων ἑκάτερον συνίστασθαι τῶν δύο διὰ πασῶν, ἀλλ’ ἀνάπαλιν ὑπὸ θατέρου θάτερον, τουτέστι τὸ μὲν ὀξύτερον ὅλον ὑπὸ τοῦ ὀξυτέρου, τὸ δὲ βαρύτερον ὑπὸ τοῦ βαρυτέρου, τῆς αὐτῆς κατατομῆς ἐφ’ ἑκατέρου παρατιθεμένης. Νοείσθω γὰρ τὸ προκείμενον σχῆμα περιέχον ὅλον τὸ μῆκος τοῦ ἑτέρου τῶν τετραχόρδων, καὶ προκείσθω τοὺς μὲν βαρυτέρους τοῦ διὰ πασῶν τέσσαρας φθόγγους ἀποτέμνειν πρὸς τοῖς ΑΒΓΔ πέρασι, τοὺς δὲ ὀξυτέρους πρὸς τοῖς ΕΖΗΘ, τοῦ μὲν ΔΘ διαιρουμένου εἴς τε τὸν βαρύτατον καὶ τὸν ὀξύτατον τοῦ διὰ πασῶν, τοῦ δ’ ἐφεξῆς, τουτέστι τοῦ ΓΗ, εἰς τοὺς δύο τοὺς δευτέρους ἀπὸ τῶν εἰρημένων, τοῦ δὲ ΒΖ εἰς τοὺς δύο τοὺς τρίτους ἀπὸ τῶν αὐτῶν, τοῦ δὲ ΑΕ εἰς τοὺς δύο τοὺς τετάρτους ἀπὸ τῶν ἄκρων, ὥστε περιέχεσθαι κύκλῳ τὴν τάξιν ἀπὸ τοῦ ὀξυτάτου ἐπὶ τὸ βαρύτατον διὰ τῶν ΘΗΖΕ καὶ ΑΒΓΔ. ἐὰν δὴ τοῦ προειρημένου κανονίου πρὸς ἑκάτερον μέρος εἰς τὰ προειλημμένα ἐν τῷ διπλασίῳ λόγῳ μήκη τὸ μεῖζον μόνον ἀεὶ τμῆμα παρατιθέντες τοῖς φθόγγοις ἐναλλάξ, ὥστε ἐπὶ μὲν τῶν πρώτων τεσσάρων ἀριθμῶν τὴν ἀρχὴν τῶν μοιρῶν τοῖς ΘΗΖΕ πέρασιν ἐφαρμόζειν, τῶν ἐλαττόνων ἀπὸ τοῦ Θ λαμβανομένων, ἐπὶ δὲ τῶν ἐξαρχῆς τεσσάρων τοῖς ΑΒΓΔ πέρασι συνάπτειν, τῶν ἐλαττόνων κἀν τούτοις ἀπὸ τοῦ Α πάλιν λαμβανομένων, ὑποφέρωμεν τὰ μαγάδια ταῖς ὑπὸ τῶν ἀριθμῶν διασημαινομέναις τομαῖς, ποιήσει δηλονότι ὁ μὲν ΘΚ φθόγγος τὸν ὀξύτατον τοῦ διὰ πασῶν, ὁ δὲ ΗΛ τὸν δεύτερον ἀπ’ αὐτοῦ, ὁ δὲ ΖΜ τὸν τρίτον, ὁ δὲ ΕΝ τὸν τέταρτον, καὶ πάλιν ὁ μὲν ΑΞ τὸν πέμπτον, ὁ δὲ ΒΟ τὸν ἕκτον, ὁ δὲ ΓΠ τὸν ἕβδομον, ὁ δὲ ΔΡ τὸν ὄγδοον. κἂν συνάπτωμεν αὐτῷ τὸ ἕτερον τετράχορδον, ἐκλαμβάνοντες καὶ ἐπ’ ἐκείνου τὴν ἐκ τῶν αὐτῶν ἀριθμῶν συνισταμένην κατατομήν, δύο ποιήσομεν διὰ πασῶν, ἰσοτόνων μὲν ἀμφοτέρων ὄντων τῶν τετραχόρδων καὶ αὐτὰ ἰσότονα ἀλλήλοις καὶ ὥσπερ διπλᾶ, ἀμφοτέρων δὲ τῇ τοῦ διὰ πασῶν διαφερόντων τάσει, διαφέροντα τῷ αὐτῷ μεγέθει καὶ συναπτόμενα μέχρι τοῦ δὶς διὰ πασῶν. Ὅτι μὲν οὖν οὐκέτι προέκοψεν ἐνταῦθα μετὰ τὸ τῆς ΘΚ μῆκος ἡ ἐπὶ τοὺς ὀξυτέρους τόπους καθαίρεσις, ὅπερ συνέβαινεν ἐπὶ τῆς προτέρας ἀγωγῆς, ἑτέρων ἐκεῖ τῶν ὀξυτάτων φθόγγων ὑποτιθεμένων, αὐτόθεν δῆλον. φανερὸν δ’ ὅτι καὶ μόνη κατὰ τοῦτον τὸν τρόπον ἡ προτέρα χρῆσις δύναται προχωρεῖν, οὐκέτι δὲ ἡ διὰ τῶν κοινῶν μαγάδων λαμβανομένη. τῶν γὰρ κατὰ πλάτος ἀποχῶν τῶν αὐτῶν ἐξ ἀνάγκης δι’ ὅλου τοῦ μήκους τῶν χορδῶν τηρουμένων, ἐκείνη μὲν ἡ τάξις τοὺς ὑπὸ τῶν αὐτῶν φθόγγων περιεχομένους λόγους ἐτήρει πρὸς ἑκάτερα τὰ πέρατα τοὺς αὐτοὺς ἀκολούθως τῇ ταυτότητι τῆς κατὰ πλάτος αὐτῶν ἀποχῆς, ἐπειδήπερ ὑπέκειντο ποιήσοντες ἅπαντες ἐν τοῖς ἀντικειμένοις μέρεσι τὸ διὰ πασῶν, αὕτη δὲ ὡς ἐπίπαν ἀνομοίους ὑφισταμένη λόγους ὑπὸ τῶν αὐτῶν φθόγγων καὶ τῶν αὐτῶν κατὰ πλάτος ἀποχῶν ἐφ’ ἑκάτερα περιεχομένους οὐκέτι δύναται τὸ ἀκόλουθον τῶν ὑπεροχῶν ταῖς δι’ ὅλου τοῦ μήκους ὁμοιότησι περιλαμβάνειν. αἱ μὲν δὴ πιθανώτεραι τῶν ἐφόδων, καθ’ ἃς ἂν ἐν τοῖς ἡμίσεσι τῶν ἀριθμῶν φθόγγοις τὰ τῶν διπλασίων συστήματα κατατέμνοιμεν, τοιαῦταί τινες ἂν εἶεν. καθόλου δὲ προσακτέον τοὺς ἐκκειμένους ἀριθμοὺς ταῖς μὲν τὸ διὰ πασῶν περιεχούσαις χρήσεσι τοὺς ἀπὸ τῆς νήτης τῶν διεζευγμένων ἔχοντας τὴν κατατομήν, ἵν’ ἐν ταῖς μέσαις τάσεσιν ἐκλαμβάνηται τὸ μέλος, ταῖς δὲ τὸ δὶς διὰ πασῶν τοὺς ἀπὸ τῆς νήτης τῶν ὑπερβολαίων ἢ τῆς μέσης ἐκτεθειμένους, ἵνα κατ’ ἀμφοτέρων τῶν ἄκρων καὶ ὁμοίων ἐφαρμόζεσθαι δύνηται. ἔτι δὲ προσεκτέον ὅπως, κἂν ἔλαττον ᾖ τὸ τῶν κινουμένων μαγαδίων πλάτος τοῦ τῶν πρὸς τοῖς πέρασι μενόντων, ὅπερ καὶ ἀκόλουθόν ἐστιν, ἵνα μὴ συχνὸν μέρος ἐξαίρωσι τοῦ μήκους, τὰ γοῦν κυρτώματα πάντων ἴσων κύκλων ποιῇ περιφερείας, καὶ μὴ γίνηταί τις παραλλαγὴ περὶ τὰ μεταξὺ τῶν ἀποψαλμάτων μήκη, διὰ τὸ μὴ δεῖν τὰ κινούμενα τῶν μαγαδίων ὑψηλοτέραν τῶν ἄκρων ἔχειν θέσιν. Νοείσθω γὰρ ἡ βάσις τοῦ κανόνος ἐπὶ τῆς ΑΒ εὐθείας καὶ ἀνήχθωσαν αὐτῇ πρὸς ὀρθὰς γωνίας αἱ ΑΓΔ καὶ ΒΕΖ, καὶ κέντροις τοῖς Γ καὶ Ε γεγράφθω τμήματα κύκλων κατὰ τὰς κυρτὰς τῶν μαγαδίων περιφερείας τὰ ΗΔ καὶ ΘΖ, ὥστε μείζονα εἶναι τὴν ΒΖ τῆς ΑΔ: διήχθω τε ἐφαπτομένη τῶν περιφερειῶν εὐθεῖα κατὰ τὰ Η καὶ Θ, ἡ ΘΗ, καὶ ἐπεζεύχθωσαν μὲν αἱ ΗΓ καὶ ΘΕ, τεμνέσθω δὲ ἡ ΗΘ ὑπὸ μὲν τῆς ΓΔ ἐκβληθείσης κατὰ τὸ Κ, ὑπὸ δὲ τῆς ΕΖ ὁμοίως ἐκβληθείσης κατὰ τὸ Λ. τῶν δὴ διὰ μέσου τοῦ πλάτους τῶν μαγαδίων σημειουμένων εὐθειῶν κατὰ τὰ Δ καὶ Ζ σημεῖα πιπτουσῶν, ἐφ’ ὧν εἰ αἱ ΑΔ καὶ ΒΖ ἐξεβλήθησαν, καὶ αἱ ἐπαφαὶ τῶν χορδῶν κατὰ τὰ Δ καὶ Ζ σημεῖα καὶ τὰ ἀποψάλματα συνίσταντο. δῆλον ὅτι καὶ ἡ μὲν πρόσθεσις τοῦ κανονίου τοῖς Κ καὶ Λ πέρασι παραλαμβανομένη δείξει τὸ ΚΛ μῆκος, ἡ δὲ μεταξὺ τῶν ἀληθινῶν ἐπαφῶν καὶ ἀποψαλμάτων ποιήσει τὸ ΗΘ. καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ, ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ καὶ ἡ ΓΗ τῇ ΕΘ. διὰ τοῦτο δὲ καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ, οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ: ἴσων μὲν ἄρα οὐσῶν τῶν ΓΗ καὶ ΕΘ, τουτέστιν ἴσων κύκλων τμήματα ποιουσῶν τῶν ΖΘ καὶ ΗΔ περιφερειῶν, ἴση ἔσται καὶ ἡ μὲν ΘΛ τῇ ΗΚ, ἡ δὲ ΚΛ ὅλῃ τῇ ΗΘ, ὥστε μηδαμῶς διαφέρειν τὴν ἐκλαμβανομένην ὑπὸ τοῦ κανονίου διάστασιν τῆς ἀληθινῆς: ἀνίσων δέ, οὐκέτι τηρηθήσεται τὸ τοιοῦτο, ἀλλ’ ἕτερόν τι δειχθήσεται τμῆμα διὰ τῆς κατατομῆς τοῦ κατὰ φύσιν συνισταμένου. καὶ εἰ μὲν ἐνεδέχετο τὴν τοιαύτην παραλλαγὴν ἐπὶ πάντων ἁπλῶς τῶν φθόγγων ὑπὸ τὸν αὐτὸν πίπτειν λόγον, ὅπερ ἂν συνέβαινεν, εἰ πάντα τὰ μαγάδια τὰς ἴσας ἐποίει πρὸς τὰ πέρατα διαστάσεις, οὐδὲν ἂν διέπιπτεν ἐν τῇ χρήσει τοῖς αὐτοῖς μέρεσιν αὐξομένων ἢ μειουμένων τῶν λόγων ἐφ’ ἑκάστης τῶν χορδῶν. ἐπεὶ δ’ ἀναγκαῖον ἐκ παντὸς ἄνισα ποιεῖν μήκη τὰς τῶν μαγαδίων ὑπαγωγάς, οἷς ἀκολουθεῖ τὸ καὶ τὰς ὑπεροχὰς ἐπὶ μὲν τῶν μειζόνων ἀποχῶν ἐν ἐλάττοσιν ἵστασθαι διαφοραῖς, ἐπὶ δὲ τῶν ἐλαττόνων ἀνάπαλιν ἐν μείζοσιν, οὐκ ἡ τυχοῦσα γίνοιτ’ ἂν ἁμαρτία περὶ τὰ μήκη τῶν κατὰ τοιοῦτο τὸ ἡρμοσμένον τμημάτων, ἐὰν μὴ καθ’ ὃν διεστειλάμεθα τρόπον ποιώμεθα τὰς τῶν μαγαδίων τῶν τε μενόντων καὶ τῶν κινουμένων θέσεις τε καὶ ὑπαγωγάς.

3.13.3