Ptolemy Harmonics 2.5

Πῶς αἱ τῶν φθόγγων ὀνομασίαι πρὸς τὴν θέσιν ἐκλαμβάνονται καὶ τὴν δύναμιν.

Πόθεν μὲν οὖν τὸ διὰ πασῶν καὶ διὰ τεσσάρων σύστημα παρέζευκται τῷ δὶς διὰ πασῶν ἐν τοῖς ἑξῆς ἡμῖν ὑπ’ ὄψιν ἔσται. τοὺς δὲ τοῦ τῷ ὄντι τελείου καὶ δὶς διὰ πασῶν φθόγγους πεντεκαίδεκα συνισταμένους διὰ τὸ κοινὸν ἕνα γίνεσθαι τοῦ τε βαρυτέρου καὶ τοῦ ὀξυτέρου διὰ πασῶν καὶ μέσον πάντων ποτὲ μὲν παρ’ αὐτὴν τὴν θέσιν, τὸ ὀξύτερον ἁπλῶς ἢ βαρύτερον, ὀνομάζομεν μέσην μὲν τὸν εἰρημένον κοινὸν τῶν δύο διὰ πασῶν, προσλαμβανόμενον δὲ τὸν βαρύτατον καὶ νήτην ὑπερβολαίων τὸν ὀξύτατον, εἶτα τοὺς μὲν μετὰ τὸν προσλαμβανόμενον ἐπὶ τὸ ὀξὺ μέχρι τῆς μέσης ὑπάτην ὑπάτων καὶ παρυπάτην ὑπάτων καὶ λιχανὸν ὑπάτων καὶ ὑπάτην μέσων καὶ παρυπάτην μέσων καὶ λιχανὸν μέσων, τοὺς δὲ μετὰ τὴν μέσην ὁμοίως μέχρι τῆς νήτης τῶν ὑπερβολαίων παραμέσην καὶ τρίτην διεζευγμένων καὶ παρανήτην διεζευγμένων καὶ νήτην διεζευγμένων καὶ τρίτην ὑπερβολαίων καὶ παρανήτην ὑπερβολαίων, ποτὲ δὲ παρὰ τὴν δύναμιν αὐτήν, τὸ πρός τι πῶς ἔχον, ᾧ δὴ πρότερον ἐφαρμόσαντες ταῖς θέσεσι τὰς κατὰ τὸ καλούμενον ἀμετάβολον σύστημα δυνάμεις τοῦ δὶς διὰ πασῶν, ἵνα κοινὰς ἐπ’ αὐτοῦ ποιησάμενοι τὰς κατηγορίας τῶν τε θέσεων καὶ τῶν δυνάμεων μεταλαμβάνωμεν αὐτὰς ἐπὶ τῶν ἄλλων. τὸν γὰρ ἕτερον τῶν ἐν τῷ δὶς διὰ πασῶν δύο τόνων ἀπὸ τῆς τῇ θέσει μέσης ἐκλαβόντες καὶ παραθέντες αὐτῷ καθ’ ἑκάτερον μέρος δύο τετράχορδα συνημμένα τῶν ἐν τῷ ὅλῳ τεσσάρων, εἶτα τὸν ἕτερον τόνον τῷ λοιπῷ καὶ βαρυτάτῳ τῶν διαστημάτων ἀποδόντες, μέσην μὲν τῇ δυνάμει καλοῦμεν ἀπὸ τῆς τότε καταστάσεως τὸν βαρύτερον τῆς ὀξυτέρας διαζεύξεως, καὶ παραμέσην τὸν ὀξύτερον, προσλαμβανόμενον δὲ καὶ νήτην ὑπερβολαίων τὸν βαρύτερον τῆς βαρυτέρας διαζεύξεως, καὶ ὑπάτην ὑπάτων τὸν ὀξύτερον: εἶτα μέσων μὲν ὑπάτην τὸν κοινὸν τῶν συνημμένων δύο βαρυτέρων τετραχόρδων μετὰ τὴν βαρυτέραν διάζευξιν, νήτην δὲ διεζευγμένων τὸν κοινὸν τῶν συνημμένων δύο <ὀξυτέρων> τετραχόρδων μετὰ τὴν ὀξυτέραν διάζευξιν, καὶ πάλιν παρυπάτην μὲν ὑπάτων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ μετὰ τὴν βαρυτέραν διάζευξιν τετραχόρδου, καὶ λιχανὸν ὑπάτων τὸν τρίτον, παρυπάτην δὲ μέσων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς ὀξυτέρας διαζεύξεως τετραχόρδου, καὶ λιχανὸν μέσων τὸν τρίτον: εἶτα τρίτην μὲν διεζευγμένων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ μετὰ τὴν ὀξυτέραν διάζευξιν τετραχόρδου, καὶ παρανήτην διεζευγμένων τὸν τρίτον, τρίτην δὲ ὑπερβολαίων τὸν ἀπὸ τοῦ βαρυτάτου δεύτερον τοῦ πρὸ τῆς βαρυτέρας διαζεύξεως τετραχόρδου, καὶ παρανήτην ὑπερβολαίων τὸν τρίτον. καὶ δὴ κατὰ ταύτας τὰς ὀνομασίας, τουτέστι τὰς τῶν δυνάμεων, μόνως ἂν καλοῖντο κυρίως τῶν φθόγγων ἑστῶτες μὲν ἐν ταῖς τῶν γενῶν μεταβολαῖς προσλαμβανόμενος καὶ ὑπάτη ὑπάτων καὶ ὑπάτη μέσων καὶ μέση καὶ παραμέση καὶ νήτη διεζευγμένων καὶ νήτη ὑπερβολαίων, μία τις οὖσα καὶ ἡ αὐτὴ τῷ προσλαμβανομένῳ, κινούμενοι δὲ οἱ λοιποί. μεταβιβαζομένων γὰρ τῇ θέσει τῶν δυνάμεων οὐκέτι τοῖς αὐτοῖς τόποις ἐφαρμόζουσιν οἱ τῶν ἑστώτων ἢ κινουμένων ὅροι. δῆλον δ' ὅτι καὶ τὸ μὲν πρῶτον εἶδος τοῦ διὰ πασῶν ἐν τῷ προκειμένῳ συστήματι, καλουμένῳ δ' ἀμεταβόλῳ, διὰ τὴν εἰρημένην αἰτίαν περιέχουσιν ἥ τε παραμέση καὶ ἡ ὑπάτη τῶν ὑπάτων, τὸ δὲ δεύτερον ἥ τε τρίτη τῶν διεζευγμένων καὶ ἡ παρυπάτη τῶν ὑπάτων, τὸ δὲ τρίτον ἥ τε παρανήτη τῶν διεζευγμένων καὶ ἡ λιχανὸς τῶν ὑπάτων, τὸ δὲ τέταρτον ἥ τε νήτη τῶν διεζευγμένων καὶ ἡ ὑπάτη τῶν μέσων, τὸ δὲ πέμπτον ἥ τε τρίτη τῶν ὑπερβολαίων καὶ ἡ παρυπάτη τῶν μέσων, τὸ δὲ ἕκτον ἥ τε παρανήτη τῶν ὑπερβολαίων καὶ ἡ λιχανὸς τῶν μέσων, τὸ δὲ ἕβδομον ἥ τε νήτη τῶν ὑπερβολαίων ἢ ὁ προσλαμβανόμενος καὶ ἡ μέση: ὡς ἔχουσι τοῦ προχείρου τῆς ἐπιβολῆς ἕνεκεν αἱ ὑποκείμεναι τοῦ ἀμεταβόλου συστήματος παρασημειώσεις.

Contentsprevious: 2.4next: 2.6