Ptolemy Harmonics 2.6.text

Τοῦτο μὲν οὖν τὸ σύστημα λέγεται καὶ διεζευγμένον πρὸς ἀντιδιαστολὴν τοῦ λαμβανομένου κατὰ τὸ συντιθέμενον μέγεθος ἐκ τοῦ διὰ πασῶν καὶ διὰ τεσσάρων, ὃ καλεῖται συνημμένον ἕνεκεν τοῦ συνημμένον ἔχειν ἀντὶ τῆς διαζεύξεως τῇ μέσῃ τετράχορδον ἕτερον ἐπὶ τὸ ὀξύ, προσαγορευόμενον καὶ αὐτὸ συνημμένον ἀπὸ τοῦ συμβεβηκότος, ὥσπερ καὶ τὸ διεζευγμένον, ἐφ’ οὗ πάλιν τρίτην μὲν συνημμένων τὸν μετὰ τὴν μέσην φθόγγον, παρανήτην δὲ συνημμένων τὸν ἑξῆς καὶ τὸν ἡγούμενον τοῦ τετραχόρδου καὶ ἑστῶτα νήτην συνημμένων. ἔοικε μέντοι τὸ τοιοῦτο σύστημα παραπεποιῆσθαι τοῖς παλαιοῖς πρὸς ἕτερον εἶδος μεταβολῆς, ὡσανεὶ μεταβολικόν τι παρ’ ἐκεῖνο ἀμετάβολον. οὐδὲ γὰρ τῷ κατὰ γένος μὴ μεταβάλλειν λέγεται τοιοῦτον, ὅ ποτέ γε κοινόν ἐστι πάντων τῶν γενῶν, ἀλλὰ τῷ κατὰ τὴν τοῦ τόνου δύναμιν. Εἰσὶ δὲ καὶ παρὰ τὸν οὕτω λεγόμενον τόνον μεταβολῶν δύο πρῶται διαφοραί, μία μὲν καθ’ ἣν ὅλον τὸ μέλος ὀξυτέρᾳ τάσει διεξίεμεν ἢ πάλιν βαρυτέρᾳ, τηροῦντες τὸ διὰ παντὸς τοῦ εἴδους ἀκόλουθον, δευτέρα δὲ καθ’ ἣν οὐχ ὅλον τὸ μέλος ἐξαλλάσσεται τῇ τάσει, μέρος δέ τι παρὰ τὴν ἐξαρχῆς ἀκολουθίαν. διὸ καὶ καλοῖτ’ ἂν αὕτη τοῦ μέλους μᾶλλον ἢ τοῦ τόνου μεταβολή. κατ’ ἐκείνην μὲν γὰρ οὐκ ἀλλάσσεται τὸ μέλος ἀλλ’ ὁ δι’ ὅλου τόνος, κατὰ ταύτην δὲ τὸ μὲν μέλος ἐκτρέπεται τῆς οἰκείας τάξεως, ἡ δὲ τάσις οὐχ ὡς τάσις ἀλλ’ ὡς ἕνεκα τοῦ μέλους, ὅθεν ἐκείνη μὲν οὐκ ἐμποιεῖ ταῖς αἰσθήσεσι φαντασίαν ἑτερότητος τῆς κατὰ τὴν δύναμιν, ὑφ’ ἧς κινεῖται τὸ ἦθος, ἀλλὰ μόνης τῆς κατὰ τὸ ὀξύτερον ἢ βαρύτερον. αὕτη δὲ ὥσπερ ἐκπίπτειν αὐτὴν ποιεῖ τοῦ συνήθους καὶ προσδοκωμένου μέλους, ὅταν ἐπὶ πλέον μὲν συνείρηται τὸ ἀκόλουθον, μεταβαίνῃ δέ που πρὸς ἕτερον εἶδος ἤτοι κατὰ γένος ἢ κατὰ τὴν τάσιν, οἷον ὅταν ἀπὸ διατονικοῦ συνεχοῦς ἀποκλίνῃ που τὸ γένος ἐπὶ χρωματικόν, ἢ ὅταν ἀπὸ μέλους ἐπὶ τοὺς διὰ πέντε συμφώνους εἰωθότος ποιεῖσθαι τὰς μεταβάσεις ἐπὶ τοὺς διὰ τεσσάρων γένηταί τις ἐκτροπή, καθάπερ ἐπὶ τῶν ἐκκειμένων συστημάτων. ἀναβαῖνον γὰρ τὸ μέλος ἐπὶ τὴν μέσην, ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν μέσων, ἀλλὰ περισπασθὲν ὥσπερ συναιρεθῇ πρὸς τὸ συνημμένον τῇ μέσῃ τετράχορδον, ὥστε ἀντὶ τοῦ διὰ πέντε τὸ διὰ τεσσάρων ποιῆσαι πρὸς τοὺς πρὸ τῆς μέσης φθόγγους, ἐξαλλαγὴ γίνεται καὶ πλάνη ταῖς αἰσθήσεσι τοῦ γενομένου παρὰ τὸ προσδοκηθέν, καὶ πρόσφορος μέν, ὅταν σύμμετρος ἡ συναίρεσις καὶ ἐμμελής, ἀπρόσφορος δέ, ὅταν τοὐναντίον. διὸ καλλίστη καὶ μία δυνάμει σχεδόν ἐστιν ἡ ὁμοία τῇ προειρημένῃ τονιαίαν λαμβάνουσα τὴν προληπτικὴν μετάπτωσιν, ᾗ διαφέρει τὸ διὰ πέντε τοῦ διὰ τεσσάρων. τῷ μὲν γὰρ κοινὸς εἶναι τῶν γενῶν ὁ τόνος ἐν ἅπασιν αὐτοῖς δύναται ποιεῖν τὴν μεταβολήν, τῷ δὲ τῶν ἐν τοῖς τετραχόρδοις λόγων ἕτερος ἐξαλλάσσειν τὸ μέλος, τῷ δὲ σύμμετρος ὡς ἂν πρῶτος συνιστάμενος τῶν ἐμμελῶν, μήτε μεγάλας τὰς ἐκβάσεις τοῦ μέλους, μήτε βραχείας πάνυ καθιστάναι: δυσδιάκριτον γὰρ ἑκάτερον τούτων ταῖς ἀκοαῖς. γίνεται μὲν οὖν τρία τετράχορδα κατὰ τὸ ἑξῆς συνημμένα πρὸς τὸ τῆς τοιαύτης μεταβολῆς ἴδιον μίξει τινὶ μερικῇ δύο διεζευγμένων συστημάτων, ὅταν ὅλα διαφέρωσιν ἀλλήλων κατὰ τὸν τόνον τῷ διὰ τεσσάρων. ἐπεὶ δὲ οὐδὲ οὐ προεκεκόφει τοῖς παλαιοῖς ἡ μέχρι τούτων παραύξησις τῶν τόνων μόνους γὰρ ᾔδεισαν τόν τε δώριον καὶ τὸν φρύγιον καὶ τὸν λύδιον ἑνὶ τόνῳ διαφέροντας ἀλλήλων, ὡς μὴ φθάνειν ἐπὶ τὸν τῷ διὰ τεσσάρων ὀξύτερον ἢ βαρύτερον καὶ οὐκ ἔχοντες, ὅπως ἀπὸ τῶν διεζευγμένων ποιήσωσιν ἐφεξῆς τρία τετράχορδα, συστήματος ὀνόματι περιέλαβον τὸ συνημμένον, ἵν’ ἔχωσι πρόχειρον τὴν ἐκκειμένην μεταβολήν. καθόλου μέντοι γε ἐπὶ τῶν τόνων τῶν τὸ διὰ τεσσάρων ὑπερεχόντων ἀλλήλων, ἐάν τε τῶν πρὸ τῆς ὁμοίας διαζεύξεως ἐν ἑκατέρῳ τετραχόρδῳ τὸ τοῦ ὀξυτέρου συναφθῇ τῷ τοῦ βαρυτέρου ἐπὶ τὸ ὀξύ, ποιεῖ ἐν τῷ βαρυτέρῳ τρία τετράχορδα συνημμένα, ὧν τὸ μετενεχθὲν γίνεται ὀξύτατον, ἐάν τε τῶν μετὰ τὴν ὁμοίαν διάζευξιν τετραχόρδων τὸ τοῦ βαρυτέρου συναφθῇ τῷ τοῦ ὀξυτέρου ἐπὶ τὸ βαρύ, ποιεῖ πάλιν ἐν τῷ ὀξυτέρῳ τρία τετράχορδα συνημμένα, ὧν τὸ μετενεχθὲν γίνεται βαρύτατον. Ἔστω γὰρ ἀπὸ τοῦ Α ὀξυτάτου φθόγγου τετράχορδον ἐπὶ τὸ βαρὺ τὸ ΑΒ καὶ ἕτερον αὐτῷ συνημμένον τὸ ΒΓ καὶ τόνος ἐφεξῆς διαζευκτικὸς ὁ ΓΔ καὶ πάλιν ὑπ’ αὐτὸν ἕτερα δύο τετράχορδα συνημμένα τό τε ΔΕ καὶ τὸ ΕΖ. εἰλήφθω δὲ τοῦ μὲν ὀξυτέρου τῷ διὰ τεσσάρων τόνου ἡ μὲν ὁμοία τῇ ΓΔ διάζευξις [διὰ τεσσάρων] ἡ ΗΘ, συνημμένα δ’ αὐτῇ πρὸς τὸ βαρὺ δύο πάλιν τετράχορδα τό τε ΘΚ καὶ τὸ ΚΛ, τοῦ δὲ τῷ διὰ τεσσάρων βαρυτέρου τόνου πρὸς τὸν πρῶτον ἡ μὲν ὁμοία διάζευξις τῇ ΓΔ ἡ ΜΝ, συνημμένα δ’ αὐτῇ πρὸς τὸ ὀξὺ δύο τετράχορδα τό τε ΝΞ καὶ τὸ ΞΟ. ἐπεὶ τοίνυν ὁ Θ φθόγγος ὅμοιός ἐστι τῷ Δ, ὀξύτερος ἔσται αὐτοῦ τῷ διὰ τεσσάρων ἔστι δὲ καὶ τοῦ Κ ὀξύτερος τῷ αὐτῷ ἰσότονοι ἄρα εἰσὶν ὅ τε Δ καὶ ὁ Κ, ὥστε δυνατὸν ἔσται συναφθῆναι τῷ Δ ἐπὶ τὸ ὀξὺ τὸ ΚΘ τετράχορδον καὶ ποιῆσαι τρία ἐφεξῆς ἐν τῷ ΑΖ τόνῳ τετράχορδα, ὧν αὐτὸ ἔσται ὀξύτατον, τὰ ΖΕ καὶ ΕΔ καὶ ΔΘ. πάλιν ἐπειδὴ ὁ Ν φθόγγος ὅμοιός ἐστι τῷ Γ, βαρύτερος ἔσται αὐτοῦ τῷ διὰ τεσσάρων ἔστι δὲ καὶ τοῦ Ξ βαρύτερος τῷ αὐτῷ ἰσότονοι ἄρα εἰσὶν ὅ τε Γ καὶ ὁ Ξ, ὥστε δυνατὸν ἔσται συναφθῆναι τῷ Γ ἐπὶ τὸ βαρὺ τὸ ΞΝ τετράχορδον καὶ ποιῆσαι πάλιν τρία ἐφεξῆς ἐν τῷ ΑΖ τόνῳ τετράχορδα, ὧν αὐτὸ ἔσται βαρύτατον, τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ.

2.6.title2.7.title