Ptolemy Harmonics 1.10.text

Τοιγάρτοι διαμαρτάνουσι καὶ περὶ τὴν τῆς ἐλαχίστης καὶ πρώτης συμφωνίας καταμέτρησιν, συντιθέντες αὐτὴν ἐκ δύο τόνων καὶ ἡμίσεος, ὥστε τὴν διὰ πέντε συνάγεσθαι τριῶν καὶ ἡμίσεος τόνων, τὴν δὲ διὰ πασῶν ἓξ τόνων καὶ τῶν ἄλλων ἑκάστην κατὰ τὸ ταύτης ἀκόλουθον. ὁ γὰρ λόγος ἀξιοπιστότερος ὢν ἤδη τῆς αἰσθήσεως ἐν ταῖς οὕτω βραχυτάταις διαφοραῖς ἐλέγχει τοῦτο οὕτως μὴ ἔχειν, ὣς ἔσται δῆλον. αὐτοὶ μὲν οὖν πειρῶνται τὸ προκείμενον δεικνύειν οὕτως. ἔστωσαν γὰρ δύο φθόγγοι διὰ τεσσάρων συμφωνοῦντες οἱ Α Β, καὶ ἀπὸ μὲν τοῦ Α δίτονον εἰλήφθω ἐπὶ τὸ ὀξὺ τὸ ΑΓ, ἀπὸ δὲ τοῦ Β ὁμοίως ἐπὶ τὸ βαρὺ δίτονον εἰλήφθω τὸ ΒΔ: ἑκάτερον ἄρα τῶν ΑΔ καὶ ΓΒ ἴσον ἐστίν, καὶ τηλικοῦτον ᾧ ἐλλείπει τὸ δίτονον τοῦ διὰ τεσσάρων. πάλιν δὴ ἀπὸ μὲν τοῦ Δ διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξὺ τὸ ΔΕ, ἀπὸ δὲ τοῦ Γ ὁμοίως διὰ τεσσάρων ἐπὶ τὸ βαρὺ τὸ ΓΖ. ἐπεὶ τοίνυν ἑκάτερον τῶν ΒΑ καὶ ΓΖ διὰ τεσσάρων ἐστίν, ἴσον ἐστὶ καὶ τὸ ΒΓ τῷ ΑΖ, κατὰ τὰ αὐτὰ δὲ καὶ τὸ ΑΔ τῷ ΒΕ. ἴσα ἄρα τὰ τέσσαρα διαστήματά ἐστιν ἀλλήλοις. ἀλλ’ ὅλον τὸ ΖΕ τὴν διὰ πέντε φασὶ ποιήσει συμφωνίαν, ὥστε ἐπεὶ τὸ μὲν ΑΒ διὰ τεσσάρων ἐστίν, τὸ δὲ ΖΕ διὰ πέντε, ὑπεροχὴ δ’ αὐτῶν τὰ ΖΑ καὶ ΒΕ, συναμφότερα μὲν ταῦτα καταλείπεσθαι τόνου, ἑκάτερον δ’ αὐτῶν, τουτέστιν ἑκάτερον τῶν ΑΔ καὶ ΓΒ ἡμιτονίου, διτόνου δ’ ὄντος τοῦ ΑΓ καὶ τὸ ΑΒ διὰ τεσσάρων δυσὶ καὶ ἡμίσει συντίθεσθαι τόνοις. Ὁ δὲ λόγος ἅπαξ τοῦ τόνου δειχθέντος ἐπογδόου καὶ τοῦ διὰ τεσσάρων ἐπιτρίτου δηλονότι αὐτόθεν ποιεῖ τὸ τὴν ὑπεροχήν, ᾗ ὑπερέχει τὸ διὰ τεσσάρων τοῦ διτόνου, καλουμένην δὲ λεῖμμα, ἐλάττονα εἶναι ἡμιτονίου. ληφθέντος γὰρ ἀριθμοῦ τοῦ πρώτου δυνατοῦ δεῖξαι τὸ προκείμενον, ὅς ἐστι μονάδων ͵αφλϚʹ, ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ, τούτου δὲ ἔτι ἐπόγδοος ὁ τῶν ͵αϠμδʹ, ὃς δηλονότι πρὸς τὸν τῶν ͵αφλϚʹ λόγον ἕξει διτόνου. ἔστι δὲ καὶ ἐπίτριτος τοῦ τῶν ͵αφλϚʹ ὁ τῶν ͵βμηʹ: τὸ ἄρα λεῖμμα ἐν λόγῳ ἐστὶ τῷ τῶν ͵βμηʹ πρὸς τὰ ͵αϠμδʹ. ἀλλ’ ἐὰν καὶ τοῦ τῶν ͵αϠμδʹ τὸν ἐπόγδοον λάβωμεν, ἕξομεν ἀριθμὸν τὸν τῶν ͵βρπζʹ, καὶ ἔστι μείζων ὁ λόγος ὁ τῶν ͵βρπζʹ πρὸς τὰ ͵βμηʹ, τοῦ τῶν ͵βμηʹ πρὸς τὰ ͵αϠμδʹ. τὰ μὲν γὰρ ͵βρπζʹ τῶν ͵βμηʹ μείζονι μὲν ὑπερέχει ἢ τῷ πεντεκαιδεκάτῳ αὐτῶν μέρει, ἐλάττονι δὲ ἢ τῷ τεσσαρεσκαιδεκάτῳ. τὰ δὲ ͵βμηʹ τῶν ͵αϠμδʹ μείζονι μὲν ὑπερέχει ἢ τῷ ἐννεακαιδεκάτῳ αὐτῶν μέρει, ἐλάττονι δὲ ἢ τῷ ὀκτωκαιδεκάτῳ. τὸ ἔλαττον ἄρα τοῦ τρίτου τόνου τμῆμα ἐντὸς ἀπείληπται τοῦ διὰ τεσσάρων πρὸς τῷ διτόνῳ, ὥστε τὸ μὲν τοῦ λείμματος μέγεθος ἔλαττον ἡμιτονίου συνάγεσθαι, τὸ δὲ διὰ τεσσάρων ὅλον ἔλαττον δύο καὶ ἡμίσεος τόνων. καὶ ἔστι τῷ τῶν ͵βμηʹ πρὸς τὰ ͵αϠμδʹ λόγῳ ὁ αὐτὸς ὁ τῶν σνϚʹ πρὸς τὰ σμγʹ. Τὴν δὲ τοιαύτην μάχην οὐ τοῦ λόγου καὶ τῆς αἰσθήσεως ὑποληπτέον ἀλλὰ τῶν διαφόρως ὑποτιθεμένων ἁμαρτίαν, ἤδη τῶν νεωτέρων παρ’ ἀμφότερα τὰ κριτήρια τῇ συγκαταθέσει κεχρημένων. ἡ μὲν γὰρ αἴσθησις μονονοὺ κέκραγεν ἐπιγινώσκουσα σαφῶς καὶ ἀδιστάκτως τήν τε διὰ πέντε συμφωνίαν, ὅταν ἐπὶ τῆς ἐκτεθειμένης μονοχόρδου δείξεως κατὰ τὸν ἡμιόλιον ληφθῇ λόγον καὶ τὴν διὰ τεσσάρων, ὅταν κατὰ τὸν ἐπίτριτον. οὗτοι δὲ οὐκ ἐμμένουσιν αὐτῆς ταῖς ὁμολογίαις, αἷς πάντη πάντως ἀκολουθεῖ τό τε τὴν ὑπεροχὴν τῶν εἰρημένων συμφωνιῶν τονιαίαν οὖσαν ἐν ἐπογδόῳ γίνεσθαι λόγῳ, καὶ τὸ τὴν διὰ τεσσάρων συμφωνίαν ἐλάττονα συνίστασθαι δύο καὶ ἡμίσεος τόνων, ἀλλ’ ἐν οἷς μὲν ἱκανὴ κρῖναι πέφυκεν, τουτέστιν ἐν ταῖς μείζοσι διαφοραῖς ἀπιστοῦσιν αὐτῇ παντάπασιν, ἐν οἷς δὲ οὐκ ἔνι αὐτάρκης, τουτέστιν ἐν ταῖς ἐλάττοσιν ὑπεροχαῖς πιστεύουσι, μᾶλλον δὲ προσάπτουσι κρίσεις ἐναντίας ταῖς πρώταις καὶ κυριωτέραις. ἴδοιμεν δ’ ἂν ἔτι καὶ τὸ τῆς δείξεως αὐτῶν εὔηθες ἐπιλογισάμενοι τὸ μέγεθος τῆς τοῦ λείμματος πρὸς τὸ ἡμιτόνιον παραλλαγῆς. ἐπειδὴ γὰρ εἰς ἴσους μὲν δύο λόγους οὔτε ἐπόγδοος, οὔτε ἄλλος τις διαιρεῖται τῶν ἐπιμορίων, ἴσοι δὲ ἔγγιστα ποιοῦσι λόγοι τὸν ἐπὶ ηʹ, ὅ τε ἐπὶ ιϚʹ καὶ ὁ ἐπὶ ιζʹ, εἴη ἂν κατὰ τὸν μεταξύ πως τούτων λόγον τὸ ἡμιτόνιον, τουτέστι τὸν μείζονα μὲν τοῦ ἐπὶ ιζʹ, ἐλάττονα δὲ τοῦ ἐπὶ ιϚʹ. ἔστι δὲ καὶ τῶν σμγʹ τὰ ιεʹ μεῖζον μὲν μέρος ἢ ἑπτακαιδέκατον, ἔλαττον δὲ ἢ ἑκκαιδέκατον, ὥστε συντεθέντων αὐτῶν τοῦ σμγʹ καὶ ιεʹ ἐν λόγῳ γίνεσθαι τὸ ἡμιτόνιον ἔγγιστα τῷ τῶν σνηʹ πρὸς τὰ σμγʹ. ἐδείχθη δὲ καὶ τοῦ λείμματος ὁ λόγος ὁ τῶν σνϚʹ πρὸς τὰ σμγʹ καὶ τοῦ λείμματος ἄρα τὸ ἡμιτόνιον διοίσει τῷ τῶν σνηʹ λόγῳ πρὸς τὰ σνϚʹ, ὅς ἐστιν ἐπὶ ρκηʹ. Τὴν δὲ βραχεῖαν οὕτω παραλλαγὴν δυνατὸν εἶναι κρῖναι ταῖς ἀκοαῖς οὐδ’ ἂν αὐτοὶ φήσαιεν. εἰ τοίνυν ἐνδέχεται τὸ τοσοῦτον τὴν αἴσθησιν καθάπαξ παρακοῦσαι, πολὺ μᾶλλον ἂν ἐνδέχοιτο κατὰ τὴν διὰ πλειόνων λήψεων συναγωγήν, ὁποῖον πέπονθεν αὐτοῖς ἡ προκειμένη δεῖξις τρὶς μὲν τοῦ διὰ τεσσάρων λαμβανομένου, δὶς δὲ τοῦ διτόνου κατὰ διαφόρους θέσεις, ὁπότε μηδ’ ἅπαξ ποιῆσαι δίτονον ἀκριβῶς πρόχειρόν ἐστιν αὐτοῖς. μᾶλλον γὰρ ἂν ποιήσειαν τόνον ἢ δίτονον, ἐπειδήπερ αὐτὸς μὲν ὁ τόνος ἐμμελής τέ ἐστι καὶ ἐν ἐπογδόῳ λόγῳ, τὸ δὲ ἀσύνθετον δίτονον ἐκμελές, ὡς ἂν ἐν λόγῳ τῷ τῶν παʹ πρὸς τὰ ξδʹ, ταῖς δὲ αἰσθήσεσιν εὐληπτότερα τὰ συμμετρότερα.

1.10.title1.11.text